Nano-Architected Material Resists Impact Better Than Kevlar
06-25-21
Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, has developed a nano-architected material made from tiny carbon struts that is, pound for pound, more effective at stopping a projectile than Kevlar, a material commonly used in personal protective gear. "The knowledge from this work could provide design principles for ultra-lightweight impact resistant materials for use in efficient armor materials, protective coatings, and blast-resistant shields desirable in defense and space applications," says Greer. [Caltech story]
Tags:
APhMS
research highlights
MedE
MCE
Julia Greer
KNI
New Algorithm Helps Autonomous Vehicles Find Themselves, Summer or Winter
06-24-21
Without GPS, autonomous systems get lost easily. Now a new algorithm developed at Caltech allows autonomous systems to recognize where they are simply by looking at the terrain around them—and for the first time, the technology works regardless of seasonal changes to that terrain. The general process, known as visual terrain-relative navigation (VTRN), was first developed in the 1960s. By comparing nearby terrain to high-resolution satellite images, autonomous systems can locate themselves. The problem is that, in order for it to work, the current generation of VTRN requires that the terrain it is looking at closely matches the images in its database. To overcome this challenge, Anthony Fragoso, Lecturer in Aerospace; Staff Scientist, Connor Lee, Graduate student in Aerospace, Austin McCoy, Undergraduate, and Soon-Jo Chung, Bren Professor of Aerospace and Control and Dynamical Systems and research scientist at JPL, turned to deep learning and artificial intelligence (AI) to remove seasonal content that hinders current VTRN systems. [Caltech story]
Tags:
research highlights
GALCIT
MCE
CMS
Soon-Jo Chung
Anthony Fragoso
Connor Lee
Austin McCoy
Harnessing Sound for Health: A Conversation with Tim Colonius
06-18-21
When a person develops a kidney stone or a gall stone—hard accumulations of minerals and other compounds created by the body—they can experience a great deal of pain and discomfort. Lithotripsy is the practice of breaking gall or kidney stones into small pieces within the body using shockwaves produced by a machine called a lithotripter. A new form of lithotripsy has been under development with the help of Tim Colonius, Frank and Ora Lee Marble Professor of Mechanical Engineering. [Caltech story]
Tags:
research highlights
MCE
Tim Colonius
Recording Brain Activity with Laser Light
06-07-21
Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has demonstrated for the first time a new technology for imaging the human brain using laser light and ultrasonic sound waves. The technology, known as photoacoustic computerized tomography, or PACT, has been developed as a method for imaging tissues and organs. Now, Wang has made further improvements to the technology that make it so precise and sensitive that it can detect even minute changes in the amount of blood traveling through very tiny blood vessels as well as the oxygenation level of that blood. [Caltech story]
Tags:
EE
research highlights
MedE
Lihong Wang
EAS New Horizons Diversity, Equity & Inclusion Award
05-04-21
The Division of Engineering and Applied Sciences seeks nominations to recognize and honor individuals within the EAS community who have actively contributed to EAS’s goal to be a diverse, equitable, and inclusive engineering community. The award is available to members of the EAS community, including current students, postdoctoral scholars, staff, and faculty. Nominations are due Wednesday, May 19, 2021 and are accepted from anyone in the EAS community, EAS alumni and members of the Caltech community. Click here for full description of how to make a nomination.
Tags:
APhMS
EE
honors
GALCIT
MedE
MCE
CMS
ESE
Hungry Fruit Flies are Extreme Ultramarathon Fliers
04-22-21
Michael Dickinson, Esther M. and Abe M. Zarem Professor of Bioengineering and Aeronautics; Executive Officer for Biology and Biological Engineering, has discovered that fruit flies can fly up to 15 kilometers (about 9 miles) in a single journey—6 million times their body length, or the equivalent of over 10,000 kilometers for the average human. "The dispersal capability of these little fruit flies has been vastly underestimated. They can travel as far or farther than most migratory birds in a single flight. These flies are the standard laboratory model organism, but they are almost never studied outside of the laboratory and so we had little idea what their flight capabilities were," Dickinson says. [Caltech story]
Tags:
research highlights
GALCIT
Michael Dickinson
CNS
A Swiss Army Knife for Genomic Data
04-05-21
A good way to find out what a cell is doing—whether it is growing out of control as in cancers, or is under the control of an invading virus, or is simply going about the routine business of a healthy cell—is to look at its gene expression. Lior Pachter, Bren Professor of Computational Biology and Computing and Mathematical Sciences, has developed a complex software tool that enables the processing of large sets of genomic data in about 30 minutes, using the computing power of an average laptop. Like a Swiss Army knife, the tool can be used in myriad ways for different biological needs, and will help ensure the reproducibility of scientific studies. "The interdisciplinarity of our team was crucial to conceiving of and executing this project," says Pachter. "There are people in the lab who are computer scientists, biologists, engineers. Sina Booeshaghi is in the mechanical engineering department and brings the perspective of his design background and engineering." [Caltech story]
Tags:
research highlights
MCE
CMS
Lior Pachter
Sina Booeshaghi