Recording Brain Activity with Laser Light
06-07-21
Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has demonstrated for the first time a new technology for imaging the human brain using laser light and ultrasonic sound waves. The technology, known as photoacoustic computerized tomography, or PACT, has been developed as a method for imaging tissues and organs. Now, Wang has made further improvements to the technology that make it so precise and sensitive that it can detect even minute changes in the amount of blood traveling through very tiny blood vessels as well as the oxygenation level of that blood. [Caltech story]
Tags:
EE
research highlights
MedE
Lihong Wang
EAS New Horizons Diversity, Equity & Inclusion Award
05-04-21
The Division of Engineering and Applied Sciences seeks nominations to recognize and honor individuals within the EAS community who have actively contributed to EAS’s goal to be a diverse, equitable, and inclusive engineering community. The award is available to members of the EAS community, including current students, postdoctoral scholars, staff, and faculty. Nominations are due Wednesday, May 19, 2021 and are accepted from anyone in the EAS community, EAS alumni and members of the Caltech community. Click here for full description of how to make a nomination.
Tags:
APhMS
EE
honors
GALCIT
MedE
MCE
CMS
ESE
Hungry Fruit Flies are Extreme Ultramarathon Fliers
04-22-21
Michael Dickinson, Esther M. and Abe M. Zarem Professor of Bioengineering and Aeronautics; Executive Officer for Biology and Biological Engineering, has discovered that fruit flies can fly up to 15 kilometers (about 9 miles) in a single journey—6 million times their body length, or the equivalent of over 10,000 kilometers for the average human. "The dispersal capability of these little fruit flies has been vastly underestimated. They can travel as far or farther than most migratory birds in a single flight. These flies are the standard laboratory model organism, but they are almost never studied outside of the laboratory and so we had little idea what their flight capabilities were," Dickinson says. [Caltech story]
Tags:
research highlights
GALCIT
Michael Dickinson
CNS
A Swiss Army Knife for Genomic Data
04-05-21
A good way to find out what a cell is doing—whether it is growing out of control as in cancers, or is under the control of an invading virus, or is simply going about the routine business of a healthy cell—is to look at its gene expression. Lior Pachter, Bren Professor of Computational Biology and Computing and Mathematical Sciences, has developed a complex software tool that enables the processing of large sets of genomic data in about 30 minutes, using the computing power of an average laptop. Like a Swiss Army knife, the tool can be used in myriad ways for different biological needs, and will help ensure the reproducibility of scientific studies. "The interdisciplinarity of our team was crucial to conceiving of and executing this project," says Pachter. "There are people in the lab who are computer scientists, biologists, engineers. Sina Booeshaghi is in the mechanical engineering department and brings the perspective of his design background and engineering." [Caltech story]
Tags:
research highlights
MCE
CMS
Lior Pachter
Sina Booeshaghi
Astronomers Image Magnetic Fields at the Edge of M87's Black Hole
03-24-21
The Event Horizon Telescope (EHT) collaboration, which produced the first-ever image of a black hole, revealed a new view of the massive object at the center of the M87 galaxy: a picture of its polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of a black hole. "We are now able to see a different dimension of the light circling the M87 black hole," says Katie Bouman, Assistant Professor of Computing and Mathematical Sciences, Electrical Engineering and Astronomy, Rosenberg Scholar, and co-coordinator of the EHT Imaging Working Group. "The image we reconstructed earlier showed us how bright the light was around the black hole shadow. This image is telling us about the direction of that light." [Caltech story]
Tags:
EE
research highlights
CMS
Katie Bouman
Untangling the Heat Paradox Along Major Faults
03-12-21
Nadia Lapusta, Lawrence A. Hanson, Jr., Professor of Mechanical Engineering and Geophysics, and graduate student Valère Lambert, seek to explain the size of the forces acting on "mature faults"—long-lived faults along major plate boundaries like the San Andreas Fault in California—in an effort to better understand the physics that drive the major earthquakes that occur along them. Understanding the physics that govern major earthquakes on different types of faults will help generate more accurate forecasts for earthquake threats. "We have a lot of data from large earthquakes along subduction zones, but the last really major earthquakes along the San Andreas were the magnitude-7.9 Fort Tejon quake in 1857 and the magnitude-7.9 San Francisco Earthquake in 1906, both of them before the age of modern seismic networks," Lapusta says. [Nature article] [Caltech story]
Tags:
research highlights
MCE
Nadia Lapusta
Valère Lambert
Professor Bouman Featured in Inverse Magazine
03-10-21
Katie Bouman, Assistant Professor of Computing and Mathematical Sciences, Electrical Engineering and Astronomy; Rosenberg Scholar, was featured in Inverse Magazine as one of the astronomers who captured the first image of a black hole. In 2019, Bouman and a group of more than 200 astronomers from all over the world managed the inconceivable: They captured the first image of a black hole, rendering the invisible visible. "Ideally, to see a black hole, we would need a telescope the size of the entire Earth," says Bouman. "We had to come up with a computational telescope that size." [Inverse article]
Tags:
EE
research highlights
CMS
Katie Bouman