Made-to-Order Materials
09-06-13
Julia R. Greer, Professor of Materials Science and Mechanics, and colleagues have created nanostructured, hollow ceramic scaffolds, and have found that the small building blocks, or unit cells, display remarkable strength and resistance to failure despite being more than 85 percent air. The general fabrication technique the researchers have developed could be used to produce lightweight, mechanically robust small-scale components such as batteries, interfaces, catalysts, and implantable biomedical devices. [Caltech Release]
Tags:
APhMS
energy
research highlights
MedE
health
MCE
Julia Greer
Pushing Microscopy Beyond Standard Limits
07-29-13
Changhuei Yang, Professor of Electrical Engineering and Bioengineering, and colleagues have shown how to make cost-effective, ultra-high-performance microscopes. The final images produced by their new system contain 100 times more information than those produced by conventional microscope platforms. And building upon a conventional microscope, their new system costs only about $200 to implement. This new method could have wide applications not only in digital pathology but also in everything from hematology to wafer inspection to forensic photography. [Caltech Release]
Tags:
EE
research highlights
Changhuei Yang
MedE
health
Counting White Blood Cells at Home
03-28-13
Yu-Chong Tai, Professor of Electrical Engineering and Mechanical Engineering, and colleagues have developed a portable device to count white blood cells that needs less than a pinprick's worth of blood and takes just minutes to run. The heart of the new device is a 50-micrometer-long transparent channel made out of a silicone material with a cross section of only 32 micrometers by 28 micrometers—small enough to ensure that only one white blood cell at a time can flow through the detection region. The stained blood sample flows through this microfluidic channel to the detection region, where it is illuminated with a laser, causing it to fluoresce. [Caltech Release]
Tags:
EE
research highlights
MedE
health
Yu-Chong Tai
MCE
International Scholarship Focused on Engineering Global Challenges Announced
03-14-13
The Caltech Division of Engineering and Applied Science and the USC Viterbi School of Engineering have established a new scholarship program, named after outgoing National Academy of Engineering (NAE) president Charles M. Vest at their institutions, along with six other universities around the country. "The Vest Scholarship is a superb opportunity for high-powered international graduate students to work with faculty and researchers who are international leaders in their engineering disciplines," says Chair Ares Rosakis. "At Caltech, due to its small size and strong interdisciplinary philosophy, the students will have the opportunity to work closely with not only these international leaders in engineering research, but also with their collaborators in all areas of science and technology." [Caltech Release] [Application Information]
Tags:
APhMS
EE
GALCIT
MedE
MCE
CMS
ESE
NAE
Creating Indestructible Self-Healing Circuits
03-11-13
Ali Hajimiri, Thomas G. Myers Professor of Electrical Engineering, and colleagues have built electronic chips that repair themselves. The team has demonstrated this self-healing capability in tiny power amplifiers. The amplifiers are so small, in fact, that 76 of the chips—including everything they need to self-heal—could fit on a single penny. In perhaps the most dramatic of their experiments, the team destroyed various parts of their chips by zapping them multiple times with a high-power laser, and then observed as the chips automatically developed a work-around in less than a second. [Caltech Release]
Tags:
EE
energy
MedE
Ali Hajimiri
Disease Diagnosis at the Touch of a Button
02-25-13
Axel Scherer, Bernard Neches Professor of Electrical Engineering, Applied Physics and Physics, and colleagues have built a new version of a polymerase chain reaction (PCR) device, which generates many copies of a pathogenic nucleic acid, allowing the infection to be detected. The device is the result of nearly 10 years of research at Caltech. In 2004, Scherer, a leader in the field of microfluidics, and George Maltezos were investigating how to manipulate biological fluids on a chip. While this was an interesting engineering problem, Maltezos began to wonder how he could apply the microfluidic techniques that he was perfecting to real-world problems. Then the H5N1 bird flu pandemic erupted in Asia, and the team had their real-world problem. [Caltech Release]
Tags:
APhMS
EE
MedE
health
Axel Scherer
George Maltezos
A New Tool for Secret Agents—And the Rest of Us
12-10-12
Ali Hajimiri, Thomas G. Myers Professor of Electrical Engineering, and Postdoctoral Scholar in Electrical Engineering, Kaushik Sengupta, have developed tiny inexpensive silicon microchips that generate terahertz (THz) waves that fall into a largely untapped region of the electromagnetic spectrum and that can penetrate a host of materials without the ionizing damage of X-rays. When incorporated into handheld devices, the new microchips could enable a broad range of applications in fields ranging from homeland security to wireless communications to health care, and even touchless gaming. "This extraordinary level of creativity, which has enabled imaging in the terahertz frequency range, is very much in line with Caltech's long tradition of innovation in the area of CMOS technology," says Chair Ares Rosakis. "Caltech engineers, like Ali Hajimiri, truly work in an interdisciplinary way to push the boundaries of what is possible." [Caltech Release]
Tags:
EE
energy
research highlights
MedE
health
Ali Hajimiri
Kaushik Sengupta
postdocs