News & Events

Headlines

New Ultrafast Camera Takes 70 Trillion Pictures Per Second

05-04-20

A new camera developed by Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, is capable of taking as many as 70 trillion frames per second. The camera technology, which Wang calls compressed ultrafast spectral photography (CUSP), combines a laser that emits extremely short pulses of laser light that last only one quadrillionth of a second (one femtosecond) with optics and a specialized type of camera. The technology could open up new avenues of research in fields that include fundamental physics, next-generation semiconductor miniaturization, and the life sciences. "We envision applications in a rich variety of extremely fast phenomena, such as ultrashort light propagation, wave propagation, nuclear fusion, photon transport in clouds and biological tissues, and fluorescent decay of biomolecules, among other things," Wang says. [Caltech story]

Tags: EE research highlights MedE KNI Lihong Wang

Electronic Skin Fully Powered by Sweat Can Monitor Health

04-23-20

One of the ways we experience the world around us is through our skin. From sensing temperature and pressure to pleasure or pain, the many nerve endings in our skin tell us a great deal. Our skin can also tell the outside world a great deal about us as well. Wei Gao, Assistant Professor of Medical Engineering has developed an electronic skin, or e-skin, that is applied directly on top of your real skin. "We want this system to be a platform," he says. "In addition to being a wearable biosensor, this can be a human–machine interface. The vital signs and molecular information collected using this platform could be used to design and optimize next-generation prosthetics." [Caltech story]

Tags: APhMS research highlights MedE KNI Wei Gao

Best Student Paper Award at IEEE CICC Conference´╗┐

03-25-20

Professor Azita Emami's group in collaboration with Professor Wei Gao’s group has won the best student paper award at the 2020 IEEE Custom Integrated Circuits Conference. The title of the paper is "A Fully-Integrated Biofuel-Cell-Based Energy Harvester with 86% Peak Efficiency and 0.25V Minimum Input Voltage Using Source-Adaptive MPPT." The IEEE CICC is a premier conference devoted to integrated circuit development. The conference program is a blend of oral presentations, exhibits, panels and forums. The conference sessions present original first published technical work and innovative circuit techniques that tackle practical problems. [Read the paper] [Past recipients]

Tags: EE honors MedE Kuan-Chang Chen Azita Emami Wei Gao Arian Hashemi You Yu Abhinav Agarwal William Kuo Minwo Wang Gudrun Hoskuldsdottir

Microstructures Self-Assemble into New Materials

03-03-20

A new process developed at Caltech makes it possible for the first time to manufacture large quantities of materials whose structure is designed at a nanometer scale—the size of DNA's double helix. Pioneered by Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, "nanoarchitected materials" exhibit unusual, often surprising properties—for example, exceptionally lightweight ceramics that spring back to their original shape, like a sponge, after being compressed. Now, a team of engineers at Caltech and ETH Zurich have developed a material that is designed at the nanoscale but assembles itself—with no need for the precision laser assembly. "We couldn't 3-D print this much nanoarchitected material even in a month; instead we're able to grow it in a matter of hours," says Carlos M. Portela, Postdoctoral Scholar. "It is exciting to see our computationally designed optimal nanoscale architectures being realized experimentally in the lab," says Dennis M. Kochmann, Visiting Associate. [Caltech story]

Tags: APhMS research highlights GALCIT MedE MCE Julia Greer KNI Dennis Kochmann postdocs Carlos Portela

Sweat Sensor Detects Stress Levels; May Find Use in Space Exploration

02-27-20

Wei Gao, Assistant Professor of Medical Engineering, has produced a wireless sweat sensor that can accurately detect levels of cortisol, a natural compound that is commonly thought of as the body's stress hormone. This could allow for more widespread and easier monitoring of stress, anxiety, post-traumatic stress disorder, and depression. "We aim to develop a wearable system that can collect multimodal data, including both vital sign and molecular biomarker information, to obtain the accurate classification for deep space stress and anxiety," Gao says. [Caltech story]

Tags: APhMS research highlights MedE KNI Wei Gao

Team CoSTAR Takes First Place in Underground Robot Competition

02-27-20

A team including Caltech researchers and JPL earned top honors in the DARPA Subterranean Challenge. Whether robots are exploring caves on other planets or disaster areas here on Earth, they need to be able to navigate a location and seek out objects of interest without access to GPS or human guidance. The Subterranean Challenge tests this kind of cutting-edge technology. "One of the two courses we had to run had multiple levels, so it was great that the Boston Dynamics robots were fantastic on stairs," says Joel Burdick, the Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering and Bioengineering and JPL research scientist, and the leader of the Caltech campus section of the CoSTAR team. [Caltech story]

Tags: research highlights MedE MCE Joel Burdick CNS

Professor Wang Advances Photoacoustic Imaging Technology

02-25-20

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed variants of photoacoustic imaging that can show organs moving in real time, develop three-dimensional (3-D) images of internal body parts, and even differentiate cancerous cells from healthy cells. Photoacoustic imaging, a technique for examining living materials through the use of laser light and ultrasonic sound waves, has many potential applications in medicine because of its ability to show everything from organs to blood vessels to tumors. Wang has now further advanced photoacoustic imaging technology with what he calls Photoacoustic Topography Through an Ergodic Relay (PATER), which aims to simplify the equipment required for imaging of this type. [Caltech story]

Tags: EE research highlights MedE KNI Lihong Wang

Ultrasound Can Selectively Kill Cancer Cells

02-05-20

Michael Ortiz, Frank and Ora Lee Marble Professor of Aeronautics and Mechanical Engineering, Emeritus, and Morteza Gharib, Hans W. Liepmann Professor of Aeronautics and Bioinspired Engineering; Booth-Kresa Leadership Chair, Center for Autonomous Systems and Technologies; Director, Graduate Aerospace Laboratories; Director, Center for Autonomous Systems and Technologies, are exploring a new technique that could offer a targeted approach to fighting cancer. Low-intensity pulses of ultrasound have been shown to selectively kill cancer cells while leaving normal cells unharmed. In the past, ultrasound waves have been used as a cancer treatment with high-intensity bursts resulting in killing cancer and normal cells. [Caltech story]

Tags: APhMS research highlights GALCIT MedE MCE Morteza Gharib Michael Ortiz

Professor Wang Develops World's Fastest Camera

01-21-20

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed the world's fastest camera, a device capable of taking 10 trillion pictures per second. It's so fast that it can even capture light traveling in slow motion. "What we've done is to adapt standard phase-contrast microscopy so that it provides very fast imaging, which allows us to image ultrafast phenomena in transparent materials," says Wang. [Caltech story]

Tags: EE research highlights MedE KNI Lihong Wang

Wearable Sweat Sensor Detects Gout-Causing Compounds

11-25-19

In a new paper published in Nature Biotechnology, Wei Gao, Assistant Professor of Medical Engineering, describes a mass-producible wearable sensor that can monitor levels of metabolites and nutrients in a person's blood by analyzing their sweat. Gao's sweat sensor is more sensitive than current devices and can detect sweat compounds of much lower concentrations, in addition to being easier to manufacture. "Considering that abnormal circulating nutrients and metabolites are related to a number of health conditions, the information collected from such wearable sensors will be invaluable for both research and medical treatment," Gao says. [Caltech story] [Read the paper]

Tags: research highlights MedE Wei Gao