Paul Rothemund and Colleagues Use Self-Assembled DNA Scaffolding to Build Tiny Circuit Boards
08-18-09
Dr. Paul Rothemund, Senior Research Associate in Bioengineering, Computer Science, and Computation and Neural Systems, and colleagues have developed a new technique to orient and position self-assembled DNA shapes and patterns--or "DNA origami"--on surfaces that are compatible with today's semiconductor manufacturing equipment. They "have removed a key barrier to the improvement and advancement of computer chips. They accomplished this through the revolutionary approach of combining the building blocks for life with the building blocks for computing," said Professor Ares Rosakis, Chair of Division of Engineering and Applied Science and Theodore von Kármán Professor of Aeronautics and Mechanical Engineering. [Caltech Press Release]
Tags:
EE
research highlights
health
CMS
Paul Rothemund
Michael Hucka and Colleagues Help Launch the First Standard Graphical Notation for Biology
08-12-09
Dr. Michael Hucka, Senior Research Fellow in Control and Dynamical Systems and Co-Director of the Biological Network Modeling Center, and colleagues in 30 laboratories worldwide have released a new set of standards for graphically representing biological information—the biology equivalent of the circuit diagram in electronics. This visual language should make it easier to exchange complex information, so that biological models are depicted more accurately, consistently, and in a more readily understandable way. The new standard, is called the Systems Biology Graphical Notation (SBGN). "As biology focuses more on managing complexity with quantitative and systematic methods, standards such as SBGN play an essential role. SBGN combines an intuitive notation with the rigorous style of engineering and math," says John Doyle, the John G. Braun Professor of Control and Dynamical Systems, Bioengineering, and Electrical Engineering. [Caltech Press Release]
Tags:
health
CMS
Michael Hucka
Michael Elowitz and Avigdor Eldar Show How Evolution Can Allow for Large Developmental Leaps
07-20-09
Michael Elowitz, Associate Professor of Biology and Applied Physics; Bren Scholar, and Avigdor Eldar, Postdoctoral Scholar, show how evolution can allow for large developmental leaps. Most volutionary changes happen in tiny increments: an elephant grows a little larger, a giraffe's neck a little longer. Elowitz and Eldar's team have shown that such changes may at least sometimes be the result of noise, working alongside partial penetrance. Eldar, states "if you take a bunch of cells and grow them in exactly the same environment, they'll be identical twin brothers in terms of the genes they have, but they may still show substantial differences in their behavior." Elowitz adds that "noise—these random fluctuations of proteins in the cell—is not just a nuisance in this system; it's a key part of the process that allows genetically identical cells to do very different things." [Caltech Press Release]
Tags:
APhMS
health
Michael Elowitz
Avigdor Eldar
postdocs