Faculty

Yaser S. Abu-Mostafa

Professor of Electrical Engineering and Computer Science

The Learning Systems Group at Caltech studies the theory and applications of Machine Learning (ML). The theory of ML uses mathematical and statistical tools to estimate the information (data and hints) needed to learn a given task. The applications are very diverse and continue to expand to every corner of science and technology. The group works on medical applications of ML, on e-commerce and profiling applications, and on computational finance, among other domains. These applications use the latest techniques of neural networks and other models, and often give rise to novel ML theory and algorithms. Our latest projects are data-driven approach to predicting the spread of COVID-19 in every U.S. county, and ML approach to medical diagnostics using low-resolution ultrasound.

Webpage
Jess F. Adkins

Smits Family Professor of Geochemistry and Global Environmental Science

Professor Adkins focuses on geochemical investigations of past climates using corals, sediments and their interstitial waters; Rate of deep ocean circulation and its relation to mechanisms of rapid climate changes; Metals as tracers of environmental processes; Radiocarbon and U-series chronology. Chemical oceanography.

Webpage
Aaron Ames

Bren Professor of Mechanical and Civil Engineering and Control and Dynamical Systems

Professor Ames’ research interests center on robotics, nonlinear control, hybrid systems and cyber-physical systems, with special emphasis on foundational theory and experimental realization on robotic systems; his lab designs, builds and tests novel bipedal robots and prosthesis with the goal of achieving human-like bipedal robotic walking and translating these capabilities to robotic assistive devices.

Webpage
Animashree (Anima) Anandkumar

Bren Professor of Computing and Mathematical Sciences

Professor Anandkumar's research interests are in the areas of large-scale machine learning, non-convex optimization and high-dimensional statistics. In particular, she has been spearheading the development and analysis of tensor algorithms for machine learning. Tensor decomposition methods are embarrassingly parallel and scalable to enormous datasets. They are guaranteed to converge to the global optimum and yield consistent estimates for many probabilistic models such as topic models, community models, and hidden Markov models. More generally, Professor Anandkumar has been investigating efficient techniques to speed up non-convex optimization such as escaping saddle points efficiently.

Webpage
José E. Andrade

George W. Housner Professor of Civil and Mechanical Engineering

Professor Andrade's research focuses on developing a fundamental understanding of the multiscale and multiphysical behaviors of porous materials—everything from soils, rocks, and concrete to bone. He also studies the behavior of granular materials like sand, snow, and even grain stored in silos. His research has particular applications to geologic and engineering infrastructure materials, as well as to the petroleum industry.

Webpage
Domniki Asimaki

Professor of Mechanical and Civil Engineering

Professor Asimaki's research combines geotechnical engineering, computational mechanics and structural dynamics to study natural ground surface features and man-made geotechnical systems --such as ridges, valleys, dams, tunnels, building foundations and offshore structures. She is particularly interested in assimilating high fidelity numerical simulations, field and experimental data, to develop engineering design models of infrastructure, resilient to hazards on urban scales and regional scales.

Webpage
Harry A. Atwater, Jr.

Otis Booth Leadership Chair, Division of Engineering and Applied Science; Howard Hughes Professor of Applied Physics and Materials Science; Director, Liquid Sunlight Alliance

Professor Atwater's research focuses on quantum and nanophotonics, metamaterials and metasurfaces, artificial photosynthesis, two-dimensional materials, nano- and micro-structured photovoltaics, space solar power and plasmonics.

Webpage
Joanna Austin

Professor of Aerospace

Joanna Austin's research is focused on fundamental problems in reactive, compressible flows across a broad range of applications, including hypervelocity flight and planetary entry, supersonic combustion and detonation, bubble dynamics, and explosive geological events.

Webpage
Jean-Philippe Avouac

Earle C. Anthony Professor of Geology and Mechanical and Civil Engineering; Associate Director, Center for Autonomous Systems and Technologies

My research aims mainly at understanding better earthquakes, crustal deformation, and geomorphic processes.  
We use field observations, seismological and geodetic measurements, remote sensing to develop kinematic and dynamic models and inform theory.  Currently active projects concern: seismicity  and mountain building processes in the Himalaya; the imaging and dynamic analysis of seismic (‘regular earthquakes’) and aseismic (‘slow earthquakes’) fault slip; probabilistic forecasting of ground deformation and seismicity, in particular in the context of subsurface engineering operations (for CO2 storage or geothermal energy production for example; the effect of hydrology on crustal deformation and seismicity; ); dune dynamics on Mars and Earth

Webpage
H. Jane Bae

Assistant Professor of Aerospace

Professor Bae's research focuses on the physical understanding and modeling of structures associated with near-wall turbulence. Her main research goal is to develop high-fidelity models that reduce the computational cost to simulate high-Reynolds-number turbulent flows. These models will allow simulations to be utilized in the design cycle of wind farms and aircrafts and in predictions of atmospheric flows, reducing the overall time and effort associated with these processes. She also studies the physical mechanisms that generate and sustain turbulence, which, in turn, fuels new modeling approaches. She has interests in applying data-driven methods, machine learning, and other novel methods to turbulence modeling. 

Webpage
Alan H. Barr

Professor of Computer Science

Professor Barr's research involves (1) mathematical simulation methods for computer graphics (2) developing new types of mathematical and computational methods for the study of biophysical behaviors and structures, and (3) technological leveraging for medical health care and new medical devices. In addition, he has been collaborating with JPL researcher Dr. Martin Lo on new computational and mathematical methods for utilizing the InterPlanetary Superhighway for developing new missions in the Solar System. All of these research areas involve the development and application of new mathematical and computational methods in the context of new applications in the physical sciences.

Webpage
Paul M. Bellan

Professor of Applied Physics

Professor Bellan focuses on experimental and theoretical plasma physics.

Webpage
Marco Bernardi

Professor of Applied Physics, Physics and Materials Science

Marco Bernardi's research focuses on theoretical and computational materials physics. His group develops new first-principles methods to investigate electron transport, ultrafast dynamics and light-matter interactions in materials. Applications of this research include electronics, optoelectronics, ultrafast spectroscopy, energy and quantum technologies.

Webpage
Kaushik Bhattacharya

Howell N. Tyson, Sr., Professor of Mechanics and Materials Science; Vice Provost

Professor Bhattacharya studies the mechanical behavior of solids, and specifically uses theory to guide the development of new materials.  Current research concerns three broad areas: (i) Active materials such as shape-memory alloys, ferroelectrics and liquid crystal elastomers, (ii) Heterogeneous materials and designing unprecedented properties by exploiting heterogeneities, (iii) Coarse-grained density functional theory to understand defects in solids.

Webpage
Adam Blank

Teaching Professor of Computing and Mathematical Sciences; Academic Director, First-Year Success Research Institute

Adam Blank’s teaching approach involves developing new technologies and techniques to enhance the learning of computer science students. They experiment with new techniques and technologies involving technology, human computation and collaboration to improve the classroom experience.  They are especially interested in broadening participation in computing via their teaching methods.

Webpage
Guillaume Blanquart

Professor of Mechanical Engineering

Guillaume Blanquart focuses on modeling the interactions between combustion processes and turbulent flows. At the center of the work are fundamental problems such as the formation of pollutants, the effects of turbulence on the dynamics of nano-particles, and various hydrodynamic and flame instabilities.

Webpage
Simona Bordoni

Visiting Associate in Environmental Science and Engineering

Professor Bordoni is interested in the dynamics of important atmospheric processes that influence weather and climate. Her work specifically focuses on the dynamics of monsoon systems, and aims at understanding fundamental dynamical mechanisms which are implicated in their existence, their location and different geographical features, and which might help understand how monsoons change with changing climates. (Currently on leave at University of Trento, Italy)

Webpage
Katherine L. (Katie) Bouman

Assistant Professor of Computing and Mathematical Sciences, Electrical Engineering and Astronomy; Rosenberg Scholar; Investigator, Heritage Medical Research Institute

Katie Bouman's research focuses on computational imaging: designing systems that tightly integrate algorithm and sensor design, making it possible to observe phenomena previously difficult or impossible to measure with traditional approaches. Imaging plays a critical role in advancing science. However, as science continues to push boundaries, traditional sensors are reaching the limits of what they can measure. Katie's group combines ideas from signal processing, computer vision, machine learning, and physics to find and exploit hidden signals for both scientific discovery and technological innovation. For example, in collaboration with the Event Horizon Telescope, Katie's group is helping to build a computational earth-sized telescope that is taking the first images of a black hole and is analyzing its images to learn about general relativity in the strong-field regime.

Webpage
John F. Brady

Chevron Professor of Chemical Engineering and Mechanical Engineering

John Brady focuses on fluid mechanics and transport processes, and complex and multiphase fluids.

Webpage
Robert D. (Bobby) Braun

Bren Professor of Aerospace

Braun’s research spans problems related to entry descent and landing (EDL) and space technology. He has made extensive contributions to the problem of hypersonic entry into the Mars atmosphere. His work has contributed to the formulation, development, and operation of multiple space flight missions.

Webpage